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a b s t r a c t

An analytical method based on the modal expansion technique was developed to

predict the vibro-acoustic response of both unidirectionally and bidirectionally stiffened

flat panel. This paper presents the response to diffuse acoustic field (DAF) and turbulent

boundary layer (TBL) excitations in terms of their joint acceptance. Numerical results for

and boundary element (BEM) results for stiffened panel with complex and eccentrically

shaped stiffeners subject to point force excitation. A theoretical prediction of the

transmission loss (TL) is also compared with laboratory measurements conducted on

flat panels representing aircraft models as well as with hybrid statistical energy analysis

(SEA)–FEM periodic model. The results confirm that the stiffened panel has the same

acoustic response as the skin without stiffeners at frequencies where the structural

wavelengths are equal to the spacing between the stiffeners. In addition, the

transmission loss is lowered by the presence of the stiffeners at some particular region

of frequencies below the critical frequency with respect to the unstiffened panel.

Crown Copyright & 2010 Published by Elsevier Ltd. All rights reserved.
1. Introduction

Unlike the vibro-acoustic response of simple continuous structures such as beams and plates [1,2], a detailed analysis of
wave motions for stiffened plates is often difficult to achieve because of the complexity of the structural configuration and
the uncertainty of the boundary conditions. Traditionally, the vibration of a periodic plate structure is analyzed using an
equivalent orthotropic plate [1,3]. Heckl [4] has suggested that a periodic ribbed plate could be treated as an orthotropic
plate when the distance between the adjacent ribs is less than a quarter of the shortest plate-bending wavelength. Based
on the calculation of wave propagating constants, he found that pass bands of a periodic ribbed plate could be divided into
two categories: the first one is close to the resonance frequencies of the un-ribbed plate, while the second is close to the
frequencies of total transmission for a plate with one beam. The orthotropic model is therefore more appropriate at lower
frequencies. The most common approaches to analyzing the dynamic response of periodic structures are wave propagation
[4–6], transfer matrix method [7,8], spectral finite elements [14], finite element method (FEM) [9–12] and boundary
element method (BEM) [13]. The two latter methods are deterministic, thus providing accurate numerical tools for
predicting the dynamic response of ribbed plates with complex configurations.
010 Published by Elsevier Ltd. All rights reserved.
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To predict the vibro-acoustics of ribbed panels in the context of statistical energy analysis (SEA), Bremner [22] has
explained the distinct behaviors in terms of wavenumbers of a flat ribbed plate of width Lx and height Ly stiffened with ribs
and frames with spacing Sy and Sx between the ribs and frames. As the modal half-wavelength in the x and y-direction goes
below the Lx and Ly dimensions, the plate behavior shifts from global behavior, over the plate area (Lx, Ly), to periodic
behavior over areas delimited by (Lx, Sy), (Ly, Sx). Finally, when the modal half-wavelength goes below the rib and frame
spacing Sx and Sy, the modal behavior is determined by the behavior of a flat uniform sub-panel delimited by the ribs and
frames. Those four conditions represent the four models required in fully describing the modal behavior of a stiffened plate
over a large frequency band. When a particular condition is met for periodic modes behavior, modes will exist in groups of
multiplicity mp. The multiplicity factor is the number of modes that are sustained at a particular frequency. Recently, Cotoni
et al. [23] developed a hybrid (SEA) subsystem formulation based on finite elements, component mode synthesis and
periodic theory to evaluate modal density and coupling loss factor of ribbed plates. The analytical model presented in this
paper will be compared to previous model.

Maidanik [24] evaluated the response of a ribbed plate excited by a diffuse field. He found that ribbing increases the
radiation resistance of the panel and therefore enhances the energy exchange between the panel and the sound field. Fahy
[25] concurs by stating that the wave reflections produced by the ribs alter the dispersion relationship in such a way that
free waves having wavenumber vector components of supersonic phase velocity can propagate at frequencies below the
critical frequency of the uniform-plate. These components increase the subcritical radiation efficiency and may cause the
panel to be excited in a coincident manner by incident sound waves at frequencies below coincidence, thus decreasing
transmission loss.

Several analytical models have been developed. Lee and Kim [15] modeled the stiffeners using a combination of
lumped masses and translational and rotational springs to evaluate the sound transmission loss by means of the spatial
harmonic technique developed by Mead and Pujara [16] and Mead [17,18]. This model does not take into account
the geometry of the stiffeners. In addition, their numerical results were not validated experimentally. Maurys and
Matte [19] added the stiffeners onto the plate as a force, but they did not take the moment into account. Lin and Pan [20]
and Lin [21] modeled the stiffeners of simply supported plates as forces and moments and investigated the forced vibration
properties of unidirectionally stiffened flat plates at low frequency range. Liu et al. [36] used the receptance method
and modal expansion technique to evaluate the airborne sound insulation of curved panels with a stringer and
frame attachments. The acoustic diffuse field response of the stiffened panels was analyzed. The formulation for
the bidirectionally stiffened panels was given in the same way as for the unidirectionally stiffened panels. In their analysis,
the effect of circumferential stiffeners was neglected and the bidirectionally stiffened panels were treated as the
unidirectional stiffened one.

In this paper, a semi-analytical formulation based on the modal expansion technique is presented to predict the vibro-
acoustic response of both unidirectionally and bidirectionally stiffened flat plates with even and uneven inter-rib spacing.
The formulation is an extension of previous modal-based works accounting for the interactions between ribs and plate as
moments and force coupling. The rotary inertia of the skin is taken into account and the method to accommodate the
eccentricity of the stiffeners about the mid-plane is clearly defined. Moreover, the effect of the cross-modal coupling on the
vibro-acoustic response of stiffened plate is investigated. The interaction between the orthogonal stiffeners in the case of
the bidirectionally stiffened plate is clearly captured in the presented formulation. The presented method allows a reliable
estimate of the responses to different types of excitations such as point force, DAF and TBL. It is worth noting here that
while there is an extensive literature on the response of isotropic flat plates to TBL excitation [26,27], only a few published
studies are available on the vibro-acoustic response of a flat plate with unidirectional stiffeners [40], and no study has been
found on bidirectional configurations.

The advantage of the presented method compared to previous work is that the response of both unidirectional and
bidirectional-stiffened plate is obtained using only one simple and general matrix formulation. Moreover, both light and
heavy fluid effect is included, rendering the method applicable for aircraft and naval stiffened plate designs. In addition, the
exact solution for vibro-acoustic responses to a diffuse acoustic field and point force excitation are presented. The
predicted results are shown in excellent agreement with FEM and BEM with a significant reduction in computational.
However, compared to the latter methods the proposed formulation is limited to flat simply supported panels and neglects
direct radiation from the stiffeners.

Section 2 includes a presentation of the analytical solution in predicting the dynamic and acoustic response of finite
plates that are evenly and unevenly stiffened with various and eccentric shapes of stiffeners. Section 3 presents a
comparison of the predicted results for the dynamic and acoustic response of panels stiffened with varied and eccentri-
cally shaped stiffeners for both unidirectional and bidirectional-stiffened panels with the results obtained using FEM. In
Section 4, the predicted transmission loss of stiffened panels are validated using experimental data and a hybrid
SEA-periodic model of Cotoni et al. [23] on two flat panels representative of those used in aircraft.
2. Theory

A description of the theoretical model is presented in this section, including the general solution in predicting the
vibro-acoustic response of both bidirectionally and unidirectionally stiffened plates.
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2.1. General formulations

The flat rectangular panels considered in this study are either unidirectionally or bidirectionally reinforced (Figs. 1 and 2).
The plate is assumed to be simply supported and reinforced by Nx and Ny eccentric stiffeners in the x and y directions,
respectively, which are either evenly or unevenly spaced along the plate surface. The plate is described using a thin shell
theory and the stiffeners are described using Euler–Bernoulli’s beam theory. The stiffeners, which are assumed to be
physically unconnected to each other, are aligned parallel to the rectangular edge and are fully connected to the plate along
their full length. The acoustic radiation from the stiffeners is not taken into account. The effect of fluid loading is, however,
accounted for and is shown to be negligible in the studied configurations.

The governing equation of the motion of a thin plate can be written as [28,29] by taking into account the plate’s
rotational inertia:
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where ~Dp ¼ Epð1þ jZÞh3
p=12ð1�n2Þ is the plate-bending stiffness. Ep, hp, np, rp and Z are, respectively, Young’s modulus,

thickness, Poisson’s ratio, density and damping coefficient of the plate. FSx

j , F
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i are the transverse shear force in x and y at

positions xi and yj. MSx

j ; M
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i are the moment per unit length at the ith and jth stiffener–plate interface. Pexc and Pl {l=1, 2}

are the external excitation and fluid loading pressures. d and d0 represent dirac operators and its spatial derivative,
respectively.

The governing equations of the flexural and torsional displacements of the ith and jth stiffener in the y-direction and the
x-direction are given by
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Fig. 1. Unidirectionally stiffened plate.
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Fig. 2. Bidirectionally stiffened plate.



ARTICLE IN PRESS

A. Mejdi, N. Atalla / Journal of Sound and Vibration 329 (2010) 4422–4439 4425
Gxi
Jxi

@2yi
Sy
ðyÞ

@y2
�rxi

Ipxi
o2yi

Sy
ðyÞ ¼M

Sy

i , (3)

Eyj
Iyj

@4Uj
Sx
ðxÞ

@x4
�ryj

Ayj
o2Uj

Sx
ðxÞ ¼ FSx

j , (4)

Gyj
Jyj

@2yj
Sx
ðxÞ

@x2
�ryj

Ipyj
o2yj

Sx
ðxÞ ¼MSx

j , (5)

where Ui
Sx

, Uj
Sy

are transversal displacement at the joint lines of attachments and yi
Sx

, yj
Sy

are torsional angles. Exi
Ixi

, Exj
Ixj

are
the bending rigidities and Gxi

Jxi
, Gyj

Jyj
are the torsional rigidities of the stiffeners in the ‘‘x-wise and y-wise’’ directions,

respectively. rxi
, ryj

and Axi
, Ayj

are the mass and surface of the stiffener, Ixi
, Iyj

and Ipxi
, Ipyj

are the moment of the inertia and
the polar moment of inertia of the stiffener cross section about its center of mass, respectively. Damping is included using
complex elasticity coefficients. To account for eccentricity between the neutral axis of the stiffeners and the mid-plane
of the plate, Huygens’ formula [38] is used to calculate the moment of inertia of the stiffeners about the mid-plane of
the plate.

The compatibility conditions at the beam/plate interfaces read:
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Eqs. (1)–(5) are solved by modal expansion of the displacement fields of the plate and stiffeners:
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where jm(x)=sin(mpx/Lx) and jn(y)=sin(npy/Ly) are the mode shape (trial functions) for simply supported boundary
conditions. Wmn, Ui

n, yi
n are the modal coefficients of the (m, n)th bending mode and modal coefficient of nth flexural and

torsional mode of the ith beam, respectively.
Multiplying Eq. (1) and Eqs. (2)–(5) by their respective mode shape functions and integrating each along the surface of

the skin and along the length of stiffener, respectively, leads to
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is the modal wavenumber of the (m, n)th plate-bending mode where the terms km=mp/Lx and

kn=np/Ly are the modal wavenumber components of the rectangular plate with respect to the two orthogonal plate edge
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directions. Eq. (15) can be written explicitly as
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where m_max, n_max are the selected truncation orders for the mode shape functions. The solution for Eq. (16) has the
following form:
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where Apqmn are the coefficients of the admittance matrix obtained from the inversion of the impedance matrix of Eq. (16).
The expression of the transversal and rotational modal coefficients is given by
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Using the compatibility conditions in Eqs. (6)–(9) and Eqs. (17)–(21), we obtain the expression of modal displacement
vector{W}at each frequency:

fWg ¼ ½A� fPg�½c�½f��1½H�T
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, (22)

where T denotes the matrix transpose, [A] is the admittance matrix and {P} is the vector of the modal load. The components
of matrices [f], [c] and vector {H} are given in Appendix A.

After a few algebraic manipulations, we obtain the following expression for the plate’s modal displacements:
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where ai
k and bi

k0l0 are complex parameters given in Appendix A.
Expression (23) is a general expression allowing the prediction of the modal displacement in both light and heavy

fluids. In the case of light-fluid loading, the modal displacement can be simplified by cancelling the cross-modal terms:
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The fluid impedance Zmnmn can be written as

Zmnmn ¼ Rmnmnþ jXmnmn: (25)
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In the case of light fluid the radiation reactance Xmnmn can also be neglected compared to the radiation resistance Rmnmn.
The latter is given by

Rmnmn ¼ r0c0smndmn, (26)

where r0 and c0 are the density and speed of the fluid, and smn is the modal radiation efficiency. In this study, we obtained
it using Leppington’s asymptotic formulas [30].

2.1.1. Response to point force excitation

Considering the model of a plate with eccentric and regular or irregular inter-rib stiffeners, attached along the ‘‘x-wise
and y-wise directions’’. Excited by a point force P0 at an arbitrary point (x0, y0), the classical vibration indicators of the plate
are easily derived. The space-averaged quadratic velocity and the quadratic velocity itself are given by
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where Wmn is given by Eq. (23) or (24) and Pmn is provided in the following expression:
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The radiated power can be written as follows:
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where [Z] is the radiation impedance matrix and R denotes the real part.

2.1.2. Response to diffuse field, point force and turbulent boundary layer load

For a diffuse acoustic field excitation, the vibro-acoustic responses are obtained by considering a plane wave excitation
having incidences angles j, y about the x-axis and z-axis, respectively. The quadratic velocity is given by
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where * denotes the conjugate.
By assuming that the fluid is light, the contribution of cross-modal loading terms ðPmnP�pqÞ and the cross-modal terms of

the radiation impedance are negligible and the quadratic velocity of the stiffened plate can be written as
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The expression of the modal loading terms jPmnðj,y,oÞj2 is computed using Maidanik’s formulation [24].
The quadratic velocity for a diffuse acoustic field is obtained by averaging over all incident angles:
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where J2
mnðoÞ is the joint acceptance in a diffuse field given by
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and ymax is the maximum angle of incidence.
The remaining integration in Eq. (34) is difficult to perform analytically, but due to the nature of the integrand, it lends

itself easily to numerical integration.
The radiated power in a diffuse field can be written as
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The transmission loss is given by

TL¼ 10Logð1=tðoÞÞ, (36)

where t(o) is the transmission coefficient in a diffuse field that is obtained by averaging overall incidence angles:
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: (37)

The incident power is given by

Piðj,y,oÞ ¼ cosðyÞS
2r0c0

, (38)
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The expression of T2
mn is given by

T2
mn ¼

Z 2p

0

Z ymax

0
jPmnðj,y,oÞj2 sinðyÞdydj, (40)

Note that, when the cross coupling is accounted for, the transmission loss is given using Eqs. (23), (29), (37) and (38).
This will include the average of the cross-modal loading terms given by [44]Z 2p

0

Z p

0
Pmnðj,y,oÞP�pqðj,y,oÞ sinðyÞdydj¼ 16p2Rmnpq

r0c0Sk2
0

, (41)

where k0is the acoustic wave number, and S is the surface of the skin.
For a TBL excitation, the quadratic velocity and radiated power are given by Eqs. (33) and (35), respectively, with the

joint acceptance J2
mn given by

J2
mnðoÞ ¼

1

S2

ZZ
A

ZZ
A0

jmðx
0Þjnðy

0Þfppðx,y,x0,y0,oÞjmðxÞjnðyÞdx dy dx0 dy0, (42)

where fpp(x, y, x0, y0) is the spatial power spectral density of blocked parietal pressure of the TBL; by applying Fourier
transform in expression (42), the joint acceptance can be written as

J2
mnðoÞ ¼

1

S2

Z þ1
�1

Z þ1
�1

jSppðkx,ky,oÞjjSmnðkx,kyÞjdkx dky, (43)

where Spp(kx, ky), Smn(kx, ky) are respectively the power spectral density of blocked parietal pressure of the TBL and the
modal function in the wavenumber domain.

There are many models for the power spectral density of TBL in the literature. Joint acceptance can be performed
analytically using Eq. (42) or Eq. (43) for models such as Cockburn’s [31], Corcos’ [32] and Efimtsov’s [33] models, or
numerically using Eq. (43) for other models such as Smol’Yakov [42] and Chase models [43].
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Finally, it is worth noting that the formulation for unstiffened and unidirectionally stiffened plates is a special case of
the previous formulation; their response can be computed by cancelling the sums involving Nx and/or Nx.

3. Numerical results and discussion

We examined the accuracy of the analytical method by comparing the predicted dynamic response to FEM simulations
for both unidirectionally and bidirectionally stiffened plates. The shape, inter-rib spacing and eccentricity of the stiffeners
were all varied. In the TBL excitation case, the model presented in this study was validated by comparing it to SEA
predictions using the commercial software program VAone [34]. This program uses Cockburn’s model [32] for the TBL and
Bremner’s ribbed plate approximation for the ribbed plates [22,41]. For the DAF excitation, the results were validated using
an in-house code with NASTRAN for the structural response and Rayleigh’s integral for the acoustic response. For the sake
of conciseness, the results presented in this section are limited to (i) numerical validations using FEM for a point force
excitation and (ii) experimental validation TL prediction. In addition, in all the results presented in this paper, the
maximum number of trial functions (base modes of the simple supported plate) is selected by verification of the solution’s
convergence. This paper does not include a convergence study.

3.1. Plate stiffened unidirectionally

3.1.1. Response to point excitation load on the stiffener

Consider the stiffened plate I shown in Fig. 3a. The cross section of the stiffeners is represented in Fig. 3b. The
mechanical and geometrical properties of the plate and the stiffeners are listed in Table 1. The origin of the (x, y) axes is at
the lower left corner of the plate. The point force is located on a stiffener at position (0.143 m, 0.11 m).

The predicted quadratic velocity and radiated power from the present model of the stiffened plate with simple eccentric
stiffeners is compared with the FEM using the commercial software program MSC.Nastran [35]. In this program, the plate
is modeled using Quad4 elements and the stiffeners are modeled as beams (Cbeam elements). Offsets are used to connect
the plate and the beams.
Fig. 3. Unidirectionally stiffened plate: (a) complete structure and (b) stiffener.

Table 1
Properties of unidirectionally stiffened plates.

Stiffened plate I Stiffened plate II Stiffened plate III

Material Aluminum Aluminum Aluminum

Number of stiffeners Nx=5 Nx=5 Nx=5

Damping Z=0.01 Z=1% Z=1%

Surface area of skin (m2) S=1.06�1.54 S=1.06�1.54 S=1.06�1.54

Thickness of the plate (m) hp=8�10�3 hp=8�10�3 h�1�10�3

Spacing between stiffeners (m) Sx=0.18 Sx=0.175 Sx=0.18

Moments of inertia of stiffeners (m4) Iyi=1.27�10�12 Iyi=3.3722�10�8 Iyi=7.83�10�9

Izi=2.93�10�12 Izi=6.0994�10�12 Izi=6.18�10�9

Stiffener cross section (m2) Ayi=1.52�10�5 Ayi=2.68538�10�5 Ayi=8.51�10�5

Eccentricity (m) ezz=1.16�10�3 ezz=1�10�2 ezz=1.642�10�2
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Fig. 4. Comparison of FEM and predicted quadratic velocity and radiated power.
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The FEM results are obtained using an in-house code which uses the eigenvalues and the eigenvectors extracted from
MSC/NASTRAN. In the FEM model, 7313 CQUAD4 thin shell elements and 514 CBAR beam elements were used. The
response was calculated using a modal frequency response analysis in 23 structural modes. In the model presented here,
the modal summation is computed using 100 trail functions (summation limited to m_max=10 and n_max=10).

Fig. 4 shows the comparison between predicted and FEM results. Both the space-averaged quadratic velocity and radiated
power are predicted by (i) using the full radiation impedance matrix (including the cross-modal terms and reactance terms),
(ii) keeping only the diagonal terms of [Z] (light coupling) and (iii) eliminating the imaginary part Xmnmn of the radiation
impedance. An excellent agreement is obtained for both the space-averaged quadratic velocity and the radiated acoustic
power when the cross-modal terms are included in the analysis. However, and as known [37], slight discrepancies are
observed between the FEM and predicted results, especially for the radiated power at anti-resonances when the cross-modal
terms are neglected. To provide a complete analysis, Fig. 4 also shows the negligible effects when the reactance terms in this
light-fluid analysis are included. As well, a slight discrepancy is observed at the first resonances. This may due to the
difference between the formulation used to compute the radiation impedance and/or the modal truncation.

On an IBM dual core 2.7 GHz computer with 2 GB of RAM, 504 s of computational time is needed when cross-modal
terms are included in the analysis. The time required drops to 244 s when only direct terms are included, compared to 110 s
when only the real part of radiation impedance is calculated using Leppington’s formulation [30]. The computational time
needed for the extraction of modes with the MSC/NASTRAN model on the same machine is 78 s. However, the
computational time to predict the vibration and acoustic response using the extracted NASTRAN modes took
approximately one hour using a dual-CPU Intel Xeon X5560 quad-core computer, 2.8 GHz of RAM.

3.1.2. Response to point excitation load on the skin

In this example, the stiffened plate II shown in Fig. 5a has eccentric stiffeners with a more complex shape Fig. 5b. Their
geometrical properties are listed in Table 1. Moreover, the load is located on the plate at position (0.218 and 0.37379 m)
measured from the lower left corner of the plate. The results are shown in Fig. 6.

In FEM predictions, the mesh used in the previous example was conserved. In the analytical predictions, 100 trail
functions were used with the cross-modal terms included and 1600 functions with cross-modal terms left out.

Again, Fig. 6 shows slight discrepancies at anti-resonances when the cross-modal terms are neglected and an excellent
agreement when the cross-modal terms are included.

The computational cost is the same as in the previous example for the model presented here and the FEM models when
a 100 plate mode shape is used. However, the computational time is 1770 s when 1600 trail functions are used. To avoid a
long computational time for the radiation impedance and inversion of large matrices, which is dimensionally dependent of
the number of plate modes, an exact truncation of the series must be done to obtain an approximate solution with
sufficient accuracy.

It is worth noting that at high frequencies such as when the structural wavelength is less than the shortest distance
between the point force and the stiffeners, the effect of stiffeners would be negligible and the dynamic response of the
stiffened plate similar to the response of the sub-panels between the stiffeners. It is also observed (not shown here) that
the stiffened plate has the same response as an equivalent orthotropic plate only at low frequencies. Moreover, there are
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Fig. 5. Unidirectionally stiffened plate: (a) complete structure and (b) stiffener.

Fig. 6. Comparison of FEM, predicted quadratic velocity and radiated power.
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some particular modes of interest at frequencies where the stiffened plate has the same acoustic response as an equivalent
unstiffened one as confirmed by Lin [21] in the dynamic response. To illustrate, Fig. 7 shows the overlapping between the
acoustics responses of the stiffened and unstiffened plates at frequencies 637, 662 and 703 Hz, corresponding to modes
(6,1), (6,2) and (6,3) of the unstiffened plate, respectively. These modes correspond to flexural modes where the plate half-
wavelength lx along the edge parallel to the x-axis (related to the modal wavenumber kx=mp/Lx by lx=2p/kx) coincides
with the spacing between stiffeners Sx: (nlx=2Sx) where n is an integer. This means that all stiffeners are located at nodal
locations of these modes. Therefore, the stiffener effect is negligible at these frequencies and the ribbed plate has the same
response as an equivalent unstiffened one.
3.2. Bidirectionally reinforced plates with evenly and unevenly spaced stiffeners

We studied the evenly and unevenly stiffened plates IV and V shown in Fig. 8a and b, respectively. Table 2 lists the
mechanical and geometrical properties of the plates and stiffeners. The point force position on plates IV and V are (0.31 and
0.5 m) and (0.31 and 0.52 m), respectively.

The accuracy of the proposed method was reverified by comparing the predicted space-averaged quadratic velocity and
radiated power to FEM results. In the FE model, 7200 CQUAD4 thin shell elements are used for the base plate. The stiffeners
are modeled using 420 CBAR beam elements for plate IV and 520 CBAR beam elements for plate V. In the model presented
here, the modal summation was computed using 100 base-plate modes. The comparisons are shown in Figs. 9 and 10.
Again, the results with and without modal coupling are shown.

The observations are similar to the previous case for both plates IV and V when the cross-modal terms are included or
left out in the analysis. The computational time used in the model presented here is 510 s for an evenly stiffened plate and
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Fig. 8. Bidirectionally stiffened plate: (a) regularly spaced stiffeners and (b) irregularly spaced stiffeners.

Fig. 7. A comparison between acoustic responses of unidirectionally stiffened plate II and the equivalent unstiffened plate.

Table 2
Properties of bidirectionally stiffened plates.

Regularly spaced plate IV Irregularly spaced plate V Stiffened plate VI

Material Aluminum Aluminum Aluminum

Number of stiffeners Nx=2 Nx=3 Nx=8

Ny=3 Ny=3 Ny=5

Damping Z=1% Z=1% Z=1%

Surface area of skin (m2) S=0.6�1.2 S=0.6�1.2 S=1.3716�1.6256

Thickness of the plate (m) hp=8�10�3 hp=8�10�3 hp~1�10�3

Spacing between stiffeners (m) Sx=0.2 Sx1=0.1; Sx2=0.3 Sx=0.175

Sy=0.3 Sy1=0.2; Sy2=0.4 Syi=0.375

Moments of inertia of stiffeners (m4) Ixi=2.0738�10�12 Ixi=2.0738�10�12 Ixi=8.71�10�8

Iyi=9.3184�10�9 Iyi=9.3184�10�9 Iyi=5.47�10�9

Stiffener cross section (m2) Axi=2.112�10�5 Axi=2.112�10�5 Axi=1.13�10�4

Ayi=2�10�5 Ayi=2�10�5 Ayi=8.99�10�5

Eccentricity (m) ezz_�x=10�2 ezz_�x=10�2 ezz_�x=3.95�10�2

ezz_�y=1.4�10�2 ezz_�y=1.4�10�2 ezz_�y=1.67955�10�2
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700 s for an unevenly stiffened plate when the cross-modal terms are included. The time needed by MSC/NASTRAN for the
extraction of modes on the same machine is 55 and 70 s for even and uneven plate stiffening, respectively. The time needed
by the in-house code is more than one hour in both cases, using the same Intel Xeon X5560 computer.
4. Experimental validation

This section presents the experimental validation for the prediction of transmission loss of the two stiffened panels.
The first panel (III) (Table 1) has unidirectional stiffeners and the second panel (VI) (Table 2) has orthogonal stiffeners.
The experimental measurements presented here were carried out at the Université de Sherbrooke.
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Fig. 9. Comparison of FEM and predicted quadratic velocity and radiated power of regularly spaced stiffeners on plate IV.

Fig. 10. Comparison of FEM and predicted quadratic velocity and radiated power of the irregularly spaced stiffeners on plate V.

A. Mejdi, N. Atalla / Journal of Sound and Vibration 329 (2010) 4422–4439 4433
4.1. Transmission loss on a unidirectionally stiffened plate loaded by diffuse field

The stiffened panel (III) was mounted between a reverberation room and an anechoic room and its TL was measured
according to standard ISO 15186-1: 2000. The low frequency limit of the used transmission loss facility is around 200 Hz
(reverberation room volume equal to 143 m3).

The comparison between measurement and predicted transmission loss of the stiffened panel (III) is shown in Fig. 11.
The field incidence (ymax=781) is used in the predictions. Overall, the comparison is good. Note in particular that the
presented method is able to predict the dips at 315 and 1250 Hz. However, these dips are less pronounced in the
experiments.

Using presented model or directly the NASTRAN model, one can visualize the modes of the panel to estimate
the wavelength (structural trace) of the plate at each frequency. In this example, it is found that below 98 Hz the
behavior is controlled by global modes. The first sub-panel mode is at approximately 100 Hz and its effect is
not clearly seen in the TL curve. The dips observed at 315 Hz, and 1250H 1/3-octave bands were correlated with
high-order sub-panel modes localized at one edge of the panel (the local modes are highly attenuated in the other
sub-panels).
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Fig. 11. Comparison between predicted and test measurement of transmission loss.

Fig. 12. Pictures of the orthogonally ribbed panel mounted between the reverberant and anechoic rooms; seen from the excitation room (left) and the

receiver room (right).
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The discrepancy observed at low frequencies may be due to boundary conditions. In fact, the model assumes simple
support while in the test the panel edges were sandwiched between two decoupled flat bars using a neoprene seal. The
boundary conditions are somehow closer to clamping than simple support; however, no attempt was made to identify the
test boundary conditions. Moreover, the size of the used reverberation room limits the lowest frequency range to 200 Hz
and thus the results at 100 and 160 Hz may be questionable.

The discrepancies at higher frequencies, near the critical frequency of the base plate, are certainly due to damping.
In the simulation, a constant 1% structural damping was used for both the plate and the stiffeners. Better agreement could
have been achieved if damping had been measured (edge damping) and used in the simulations.
4.2. Transmission loss of bidirectionally stiffened plate loaded by a diffuse field

In this test case, the measurement was conducted on a bidirectionally stiffened panel. Fig. 12 shows pictures of the
stiffened panel (VI) as mounted in the transmission loss facility.
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Fig. 13. Comparison between predicted, measured and periodic model results for transmission loss.
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Fig. 13 shows the comparison between prediction and measurement. Results from the hybrid SEA–FE periodic model
presented by Cotoni et al. [23] are also shown. The commercial software VAone [35] was used to compute these results.
Field incidence was used in the predictions both the presented model and the hybrid model are able to accurately capture
the measured TL. Both models predict the dip at 315 Hz. This dip are again highly damped in the experiment, which is
certainly related to edge damping (neoprene was used to attach the panel in the mounting window). The discrepancies
below 315 Hz are due to boundary conditions.

Based on the Bremner [22] model it is observed that low frequencies are governed by global modes and medium and
high frequencies are governed by periodic and local modes. This transition between the modes produces an increase of
sound transmission, due to the large radiation efficiency of the smaller size panels (sub-panels) at the so-called frequency
of transition. Therefore, the dip observed on the TL in the 315 Hz 1/3-octave band may be due to the transition between
global and local modes.
5. Conclusion

This paper presented a simple semi-analytical model employing the modal expansion technique in order to predict the
vibro-acoustic response of finite ribbed panels under various excitations. Both unidirectionally and bidirectionally
stiffened panels were implemented. The effects of stiffener shape, position and eccentricity were considered along with a
clear analysis of the effect of cross-modal coupling. Regularly and irregularly stiffened plates with various eccentricities
and stiffener cross-sections were studied to validate the accuracy of the analytical method in comparison with the FEM for
vibration and BEM (Rayleigh’s integral) for sound radiation. Transmission loss tests were also conducted to validate the
model in comparison with a hybrid SEA/FEM periodic model. The presented model agrees very well with experimental
tests in most frequency ranges of interest. In all studied configurations, a reduction in computational cost (CPU time and
memory) was achieved in comparison with the finite element and Boundary element method. The results of the
simulations and tests corroborate the classical behavior of stiffened panels. Although limited to a simple geometry (flat
panel) and simple boundary conditions (simple support) compared to FEM/BEM based methods, the present model still
represents an excellent tool for quick and accurate parametric studies. One other particular application of the presented
model is the quick estimation of the modal density and radiation efficiency of stiffened panels for SEA applications [39].
Acknowledgment

The authors thank NSERC (National Sciences and Engineering Research Council of Canada) industrial research chair in
aviation acoustics for its financial support.



ARTICLE IN PRESS

A. Mejdi, N. Atalla / Journal of Sound and Vibration 329 (2010) 4422–44394436
Appendix A. Matrices component for the bidirectionally stiffened plate

In Eq. (22), the matrix [f] is to be inverted numerically. This matrix is square and frequency dependent with dimensions
of (2Nxn_max+2Nym_max).2 The general form of this matrix, taking into account the cross-modal terms, is given by

(A.1)
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(A.15)

where

ji
xm ¼ sin

mpxi

Lx


 �
for i¼ 1, . . . ,Nx, m¼ 1, . . . ,m_max,

j0ixm ¼ cos
mpxi

Lx


 �
mp
Lx

for i¼ 1, . . . ,Nx, m¼ 1, . . . ,m_max, (A.16)

ji
yn ¼ sin

npyi

Ly


 �
for j¼ 1, . . . ,Ny, n¼ 1, . . . ,n_max,

j0jyn ¼ cos
npyi

Lx


 �
np
Lx

for j¼ 1, . . . ,Ny, n¼ 1, . . . ,n_max: (A.17)

Vector {H} in Eq. (22) with dimension 2Nx n_maxþ2Ny m_max
� �

is given by

fHg ¼ ½s1
1, . . . ,s1

n_max, . . . ,sNx

1 , . . . ,sNx
n_max, s011, . . . ,s01n_max, . . . ,s0Nx

1 , . . . ,s0Nx

n_max,t1
1 ,

. . . ,t1
n_max, . . . ,tNx

1 , . . . ,tNx
n_max,t011, . . . ,t01n_max, . . . ,t0Nx

1 , . . . ,t0Nx

n_max�, (A.18)

where

si
q ¼

X
p

X
m

X
n

AmnpqPmnjpðxiÞ for q¼ 1, . . . ,n_max, i¼ 1, . . . ,Nx,

tj
p ¼

X
q

X
m

X
n

AmnpqPmnjqðyiÞ for p¼ 1, . . . ,m_max, j¼ 1, . . . ,Ny,

s0iq ¼
X

p

X
m

X
n

AmnpqPmnj0p xið Þ for q¼ 1, . . . ,n, i¼ 1, . . . ,Nx,

t0 jp ¼
X

q

X
m

X
n

AmnpqPmnj0qðyiÞ for p¼ 1, . . . ,m_max, j¼ 1, . . . ,Ny: (A.19)

Using (A.1), (A.13) and (A.16), Eq. (22) can be written as

fWg ¼ ½A�½fPg�½M�fHgT1�½M�fHg
T
2� (A.20)
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where [M] is 2Nx n_maxþ2Ny m_max
� �

(n_max�m_max) matrix and the vectors {H}1, {H}2 are given by

fHg1 ¼ s1
1, . . . ,s1

n_max, . . . ,sNx

1 , . . . ,sNx
n_max,s1

1, . . . ,s01n_max, . . . ,s0Nx

1 , . . . ,s0Nx

n_max,0 . . .0
h i

, (A.21)

fHg2 ¼ ½0 . . .0,t1
1 , . . . ,t1

n_max, . . . ,tNx

1 , . . . ,tNx
n_max,t011, . . . ,t01n_max, . . . ,t0Nx

1 , . . . ,t0Nx

n_max�: (A.22)

By multiplying, we easily obtain the expression of modal displacement

Wmn ¼
X

p

X
q
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This expression can be simplified as
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X

p

X
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